

International Wound Infection Institute (IWII) Wound Infection in Clinical Practice. Wounds International. 2022.

Туре	Mechanism	Resolution limit (maximum magnification)	Type of causative microorganism		Considerations for use
			Planktonic	Biofilm	
Light microscopy	Visible light	0.2 μm (1500x)	✓	✓	 Primarily used on isolated cultures or sections of tissue Gram stain used to establish presumptive species identification Impossible to obtain definitive identification of microbial species Low-cost and readily available
Fluorescence microscopy (FISH)	Ultraviolet light	0.1 μm (2000x)	✓	✓	 Species can be identified and their relative locations mapped with fluorescent dyes/labels Only fluorescent structures can be observed Use is limited to microbial cell suspensions and thin tissue sections Cost of dyes and probes is a limitation
Confocal laser scanning microscopy (CLSM)	Laser beam coupled to a light microscope	0.1 μm (2000x)	~	✓	 Species can be identified and their relative locations mapped with fluorescent dyes/labels Tissue blocks can be examined and images obtained at regular depths can be reconstructed to generate 2D or 3D structure of whole specimen Only fluorescent structures are observed Fluorescence decays relatively quickly Cost of equipment, dyes, probes, and technical suppor is a limitation
Scanning electron microscopy (SEM)	Electrons beamed onto specimen from an angle and deflected electrons collected	10 μm (500,000x)	✓	✓	 Cannot examine living material Minimal time required for sample preparation Images of the surface layers of specimens provide insight into 3D structure Dehydration of samples may cause changes Cost of equipment and technical support is a limitation
Transmission electron microscopy (TEM)	Electrons beamed through a thin section of specimen	0.2 μm (5,000,000x)	~	✓	 Images provide detailed information on internal cellular structures or organisms Cannot examine living material Specimen preparation is lengthy, and may introduce artefacts Cost of equipment and technical support is a limitation
Polymerase chain reaction (PCR)	Amplifies specific regions of DNA	0.1 and 10 kilobase pairs	✓		 Can confirm genes of interest from bacteria, toxins, viruses and other microorganisms Rapid and highly specific Identifies non-cultivatable or slow growing microorganisms such as mycobacteria, anaerobes, or viruses

Table 06 References

- 1. Davidson MW. *Microscopy U*. 2016; Available from: <u>http://www.microscopyu.com/</u>.
- 2. Wilson SM and Antony B, Preparation of plant cells for transmission electron microscopy to optimize immunogold labeling of carbohydrate and protein epitopes, Table 1: Advantages and limitations of different microscopy techniques. Nat Protoc, 2012. 7: p. 1716-27.
- 3. Edward-Jones G, *Collection, transport, and laboratory processing of wound, tissue and bone samples,* in *Essential microbiology for wound care,* Edward-Jones V, Editor. 2016, University press: Oxford. p. 33-51.
- 4. Achinas S, Yska SK, Charalampogiannis N, Krooneman J, and Euverink GJW, A technological understanding of biofilm detection techniques: A review. Materials (Basel, Switzerland), 2020. 13(14): p. 3147.